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Lattice Methods in BSM Theory Space 



What this talk is not: reviewing work from lattice groups

Good progress is being made 

Will be discussed by lattice groups in talks of the next two days

What this talk is: overview of lattice methods commonly faced in lattice BSM work

Lattice specific: cut-off, volume, fermion mass

Familiar to on-lattice workers

Talk is mostly for off-lattice workers 
while they are thinking about making proposals for us 



Outline

- Composite Higgs Mechanism at the LHC
  lattice BSM goals in Theory Space
  world-wide lattice BSM effort 
  lattice resources (GPU technology)

- Below the Conformal Window
  lattice specific: cut-off, volume, fermion mass
  RG flow and lattice continuum physics
  BSM specific    PT  
  m=0 chiral limit and finite volume issues
  

- Inside the conformal window 
  RG flow and lattice continuum physics  
  finite size scaling 
  running coupling and tunneling
  Nf=16 case study
 

- Outlook 
  from workshop discussions: new input into lattice projects?
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Large Hadron Collider   -   CERN

•   Is there a Standard Model Higgs particle?

•   If not, what generates the masses of the weak      
     bosons and fermions?

•   New strong dynamics?

•   Composite Higgs mechanism?

Primary focus of lattice BSM 
effort and of this talk

  primary mission:

- Search for Higgs particle

- Origin of Electroweak symmetry breaking



 Two logical choices to accommodate heavy Higgs (or no Higgs) 
 scenario:

- use some effective theory with TeV scale higher dimensional  
   operators

- new microscopic theory on TeV scale

Composite Higgs mechanism  -  Technicolor 2.0 ?

- The paradigm is interesting again

- Requires non-perturbative lattice studies  

- It is difficult, but there will be real results-0.4
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FIG. 3: S parameter for Nf = 2 (red diamonds) and Nf = 6
(blue circles). For each of the solid points, MPL > 4.

S-Parameter Results The S parameter (Eq. 1) is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the ∆SSM integral in
Eq. 1 with an infrared cutoff at s = 4M 2

P
, and taking

mH = MV 0. For the case 2MP < MV 0,

∆SSM(MP ) =
1

12π

�
11

6
+ log

�
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V 0

4M 2
P
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. (3)

We use values for MP and MV 0 determined in Ref. [1].
The choice mH = MV 0 corresponds roughly to a 1 TeV
value for the reference Higgs mass.

In Fig. 3, we plot S ≡ 4π(Nf/2)Π�
V−A

(0) − ∆SSM .
For Nf = 2, the results are consistent with previous lattice
simulations [12, 13]. The SM subtraction at Nf = 2 is
small, reaching a value ∼ 0.04 for the lowest solid mass
point, corresponding to mf = 0.010. A smooth extrapo-
lation to m = 0 is expected since the LO chiral logs even-
tually appearing in Π�

V−A
(0) are canceled by the SM sub-

traction, Eq. 3. Given the linearity and small slope of the
solid data points, we include a linear fit and extrapolation.
An NLO term of the form M 2

P
logM 2

P
has not been ruled

out, but it is not visible in our data. The fit, with error band,
is shown in Fig. 3, giving Sm=0 = 0.35(6), consistent with
the value obtained using scaled-up QCD data [10].

The Nf = 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small as at Nf = 2. The
important feature is that the value of S at the lower mass
points drops below a value obtained by simply multiplying
the Nf = 2 result by a factor of 3. (For an Nf = 6 theory
with only a single electroweak doublet, the value of S at
the lower mf values of Fig. 3 would be well below that
of the Nf = 2 theory.) This trend has set in at Nf = 6
even though 6 � N c

f
. As m is decreased further at Nf =

6, S as computed here will eventually turn up since the
SM subtraction leaves a chiral-log contribution. For Nf/2
electroweak doublets, S ∼ (1/12π)[N 2

f
/4 − 1] logM 2

P
.

In a realistic context, the PNGBs receive mass from SM
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FIG. 4: Axial and vector masses, MA and MV , and their ratio.
Straight lines show linear fits to the solid points (MPL > 4), with
the extrapolated values and errors shown to the left.

and other interactions not included here, and these masses
provide the infrared cutoff in the logs.

Vector and Axial Masses A question of general inter-
est for an SU(N) gauge theory is the form of the reso-
nance spectrum as Nf is increased toward N c

f
. A trend to-

ward parity doubling, for example, would provide a strik-
ing contrast with a QCD-like theory. If the gauge theory
plays a role in electroweak symmetry breaking, then this
trend could be associated with a diminished S parameter.

We have so far computed the masses, MV and MA, and
decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the data points for each case except MA

at Nf = 6 are quite linear, with a small slope, and since
in each case, the NLO term in chiral perturbation theory
is linear in M2

P
∝ m, we include a linear fit to the solid

points (MPL > 4). The error bars on the extrapolations
are also shown. MV extrapolates to 0.215(3) for Nf = 2,
and to 0.209(3) for Nf = 6.

For Nf = 2, the extrapolated value of MA/MV =
1.476(40) is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf = 6 data points for MA

do not yet allow a simple fit and extrapolation, but they
do indicate a substantial decrease in MA/MV in the chiral
limit. This trend toward parity doubling suggests that the
spectrum could become even more parity doubled as Nf is
increased further, toward N c

f
.

Vector and Axial Decay Constants Our simulation re-
sults for FV and FA are shown in Fig. 5, using the nor-
malization conventions of Ref. [10]. The dependence on
M 2

P
/M 2

V 0 is mild, and once again, for each case except the
A at Nf = 6, quite linear with a small slope. Although
there is known to be an NLO chiral log for the decay con-
stants, it is not visible in the linear points, so we include
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Nf=2 and Nf=6 S-parameters 
Lattice Strong Dynamics Collaboration

Parity Doubling and the S Parameter Below the Conformal Window.
LSD Collaboration (Thomas Appelquist , Ron Babich, Richard C. Brower, Michael Cheng, 

Michael A. Clark, Saul D. Cohen, George T. Fleming, Joe Kiskis, Meifeng Lin, Ethan T. Neil, 
James C. Osborn, Claudio Rebbi, David Schaich, Pavlos Vranas)   Phys.Rev.Lett. 

e-Print: arXiv:1009.5967 [hep-ph]

more at this workshop (David Schaich)
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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theory space and conformal window: critically 
important for composite Higgs and TC/ETC 
space of color, flavor, and fermion representation 
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Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 16/19

for each rep BSM interest is below  
conformal window but close to it:

un-particles

lattice BSM interest

lattice results of last 3 years in 
3 reps including new projects 
just starting

not yet in BSM studies

it is stimulating to have controversial results 
close to the conformal window: these are the 
interesting candidate models

Sannino:

Which model(s) will pass the 
Electroweak precision tests?



Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 15/19

Composite Higgs mechanism?            (Technicolor and Extended Technicolor in the past)

  Extended Technicolor paradigm:

- requires walking gauge coupling 
  chiral SB on                       scale

- fermion mass generation from   
  scale at  

- can solve problem of flavor changing  
  currents

- composite Higgs mechanism 

- broken Dilaton           unusual   
  composite Higgs particle in BSM ?  
    
- can avoid conflict with EW precision 
  constraints

- candidate models require non-
  perturbative lattice studies

!TC ~ TeV

!ETC ~ 100 "1000!TC

walking coupling 
separates two scales

target of lattice BSM effort

Chiral symmetry breaking 
turns conformal FP into 
walking

running coupling

non-conformal QCD-like
far from conformal window

  original textbook Technicolor paradigm:

- one massless fermion doublet
  chiral SB

- three Goldstone pions 

- become longitudinal   
  components of weak bosons

- composite Higgs mechanism  
  scale of Higgs condensate ~ F=250 GeV  
  

- flavor changing currents and fermion 
  mass generation would be problems

- conflicts with EW precision constraints

!TC ~ TeV

u
d
!

"
#

$

%
&

This is what lattice studies in BSM theory space potentially 
could deliver 



If we knew what we were doing, it wouldn’t be called 
research

                                           A. Einstein

This is all difficult and not QCD-like!
We do not know the answer, but:                                        



It is a world-wide effort:



US BSM project sites using USQCD hardware & software support

(three years ago map was almost empty)

Kudos to the Yale group for stimulation and letting the genie out !

Yale

UCSD

UoP

LLNL
U Colorado

FNAL

Argonne

Syracuse

RPI
Columbia

 BU

Lattice BSM groups study the composite Higgs mechanism   
TC scale - perhaps stretched to ETC scale by walking coupling?

fermion mass generation has to be built on the top of it  
- some new theory on ETC scale



example of growing resources:  Lattice BSM GPU computing
                                            Technicolor video games
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QUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice 
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around

Friday, January 28, 2011

NVIDIA Tesla C2050 (Fermi) GPU
Silicon Mechanics Part Number: 19417
Manufacturer Part Number: 900-21030-2200-000

• NVIDIA® Tesla™ third-generation 40nm GPU
• 448 CUDA cores
• 3 GB GDDR5 Memory (2.625 GB w/ ECC)
• Dual Precision 515 GFlops
• Single Precision 1003 GFlops
• PCIe 2.0 x16 full-length, dual slot

Comparison
• Edge scales best for 

inversions
• But JLab nodes has more 

internal PCI Bandwidth
• Difference due to 

interconnect speed(?)
– caveat funny 4 GPU 

PCI behavior
• Teslas ‘catch up’ to 480s

– Teslas DDR IB
– GTX480-s SDR IB ?

• 8x GTX480 => 2 Tflops 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1 2 4 8 16 32 

G
F
L
O

P
S

 S
u

st
a
in

e
d

 

Number of GPUs 

Single-Half: 24x24x24x128 

Jlab Tesla 

Edge 

Jlab GTX480 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

8 16 32 64 

G
F
L
O

P
S

 S
u

st
a
in

e
d

 

Number of GPUs 

Single Half: 32x32x32x128 

Jlab Tesla  

Edge 

Jlab GTX480 

Friday, January 28, 2011

We have new computing technology for lattice BSM effort

Lattice Higgs Collaboration
Wuppertal technology

USQCD
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Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 15/19

QCD-like far below 
conformal window

critical surface (massless fermions)irrelevant couplings

g2  gauge coupling

m (fermion mass)

RT continuum physics  (mass gap)UVFP

Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 16/19

un-particles

cut-off control in non-perturbative lattice calculations from RG flow 

critical Nf 

critical surface (massless fermions)irrelevant couplings

g2  gauge coupling

m (fermion mass)

RT continuum physics (gapless)
UVFP

IRFP (conformal)

RT mass deformed conformal
continuum physics

inside the conformal window:

critical Nf 

with increasing  Nf walking 
scenario expected to arise:

Chiral symmetry breaking 
turns conformal FP into 
walking

walking coupling has 
several implications 



chiral p-regime
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Veff: chiral condensate in flavor space
arbitrary orientation of condensate

Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.
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We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we

8

Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,
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One-loop chiral expansion in p-regime:
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

�
1 − M2

8π2Nf F2 ln
�
Λ3

M

��
, (11)

Fπ = F
�
1 +

Nf M2

16π2F2 ln
�
Λ4

M

��
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3
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and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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Note 1/Nf scaling of pion mass!
warning: 2-loop ~ (Nf)2  (Bijnens)

! = MLs

M 2 = 2Bm+ O((Nf)2)

+ O((Nf)2)

 

Chiral expansion parameter is N f
M 2

16! 2F2  with !  1 condition

N f = 8 fundamental rep in USQCD BSM project

set N f
M 2

16! 2F2  =0.3, with a "m# = 0.25 (to keep cut-off under control), and m# / F $ 10 (as expected),  a "M! $ 0.01 is needed

The M! " Ls $ 10 condition (to control FSS) will require Ls $ 100!  Same scale as largest QCD projects!
N f = 2 higher reps (like sextet) are more favorable for chiral expansion

Condition of reaching the chiral expansion regime can also be estimated from rotator spectrum  %
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 for arbitrary N f )
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there are similar considerations in the $-regime

 

The rotator spectrum has the expansion parameter ~ C
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= 0.3  FLs ! 2.5 for N f = 8  (USQCD project)

with a "m# = 0.25 (to keep cut-off under control), and m# / F ! 10 (as expected),  Ls ! 100 is needed!

When expansion breaks down in $ % regime, same is expected in the p-regime

Condition of reaching the chiral expansion regime can also be estimated from rotator spectrum  !



Deceptions of finite size behavior:

(a) (b) (c)

Figure 11: Pictures illustrating various physical situations in finite volume. (a) Hadrons in a
large volume, (b) a qq̄ meson in a box of size L ! 2 fm, and (c) quarks in the femto-universe.

7 QCD in finite volume and the femto-universe

In quantum field theory the physical information is encoded in the correlation func-
tions of local operators and these are hence the primary quantities to consider. From
statistical mechanics one knows, however, that certain properties of the system can
often be determined more easily by studying its behaviour in finite volume. The
calculation of critical exponents is a classical case where such finite-size techniques
are being applied.

The questions one would like to answer in QCD are not the same as in statistical
mechanics, but the general idea to probe the system through a finite volume proves
to be fruitful here too. In this section our aim mainly is to provide a qualitative
understanding of what happens when the volume is decreased. Unless stated oth-
erwise, periodic boundary conditions are assumed and the lattice spacing is taken
to be much smaller than the relevant physical scales so that lattice effects can be
ignored.

7.1 Physical situation from large to small volumes

Let us first consider the case where the spatial extent L of the lattice is significantly
greater than the typical size of the hadrons (box (a) in fig. 11). Single hadrons are
practically unaffected by the finite volume under these conditions except that their
momenta must be integer multiples of 2π/L. For multi-particle states the situation
is a bit more complicated, because the particles cannot get very far away from
each other. Two-particle energy eigenstates, for example, really describe stationary
scattering processes. If there are no resonances the corresponding energy values
differ from the spectrum calculated for non-interacting particles by small amounts
proportional to 1/L3 [60–63].
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To see the significance of (3)  and (4) let us consider 
a typical example a lattice of a size of 1 2 fm In thts 
case the m i n i m u m  non-zero m o m e n t u m  2n /L  ts of  
the order of 1 GeV Although it may be debated which 
form should be taken for the form factor, 1 GeV is a 
relanvely large momen tum and the form factor should 
gave a rather strong suppression Therefore in the re- 
gime where the size L ts of the order of 1 fm one could 
expect the n = 0 contribution to be the dominant  term 
in the summat ion  in (3) In  this intermediate regime 
one then expects a finite-size correction to the mass 
of hadrons proportional to 1/L 3 As we saw in fig 1 
the hadron mass data fit the 1 /Z  3 c u r v e  remarkably 
well 

One may add that a 1/L 3 correction is also ex- 
pected for many-parttcle states, on a rather small box 
a hadron is not very different from a two- or three- 
particle (quark)  state (on large boxes the quarks feel 
the effect of the confining force and the 1/L 3 behav- 
lour is not expected) 

Let us illustrate the size effect predicted by ( 3 ), (4) 
by an example appropriate to the numerical  data in 
fig 1 the case of p-meson exchange ( m = 0  77 GeV 
in (4 ) )  for latttce of size up to 20 and an inverse lat- 
tice spacing a - ~ = 2 GeV For the form factor we take 

1 
F(k )  = 1 + 1 09 (k /GeV)  2 '  (5a)  

or 

F(k )  = exia [ - 3 (k /GeV)2  ] (5b)  

In th"e case (5a)  the form factor is chosen such that 
F ( k )  / (k 2 .~ m 2 ) IS very stmtlar to the nucleon elec- 
tromagnetic form factor The case (5b) ts rather ex- 
treme the hadron is extremely soft as a consequence 
of the exponential  decay o f F ( k )  for large momenta  
(the~shape o f F ( k )  itself is similar to the nucleon form 
factor) 

The result for the self-energy 8E for the case (5a) 
is shown (apart from an overall mult iphcattve con- 
stant)  in fig 2a as a functton of the lattice size L One 
sees that the 1/L 3 behavlour  holds up to L ~ 8 In the 
region L >  6, on the other hand, the data are well fit- 
ted by the usual one-particle exchange potential  
exp ( - m L ) / L  (see fig 2b) In fig 3a we show the 
~ffect of p exchange for the case (5b) Here the 1/L 3 
behavlour holds up to L g  16, and the data are not 
fitted so well by e x p ( - m L ) / L  in the region 
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Fig 2 (a) Dependence of self-energy on lattsce size L due to p 
exchange computed with the form factor eq (5a) displaying a 
power-law behavlour at small L (b) Plot of same data as in (a) 
fitted with the Yukawa potentxal exp ( -mL) /L  for a point par- 
ncle (sohd curve) 

6 < L < 20 (fig 3b) This exercise shows that the size 
where the 1/L 3 c o r r e c t i o n  disappears and the expo- 
nenttal correction sets in depends upon the behav- 
tour of the form factor although it would seem nat- 
ural to suppose that the 1/L 3 correction to the masses 
(or masses squared) disappears for sizes L larger than 
about 1 fm, it is easy to think of models in which this 
does not hold and consequently it is possible that the 
asymptotic regtme for an exponenttal finite lattice 
correction starts only for large lattices (e g 1 5-2 fm) 

The argument above produces a power law by tak- 
ing into account modifications of the propagation of 
virtual particles around the latttce through a finite 
extension of hadron wave functions For small lat- 
tices the power law may also be understood In the 
following non-relativistic picture Let us suppose that 
quarks are bound  by some confining potential and let 
ro be the length scale characterlslng the decrease of 
the wave function ~/(r) for large r One may mimic 
the finite-size effect for the wave function by squeez- 
ing the characteristic length ro as r'oocL A steeper 
variat ion of the squeezed wave function then leads to 
an increase of the kinetic energy of the ground state 
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large volume
hadrons point-like 

! exchange ~ exp(-mL)

squeezed wavefunction crossover to femto world

volume dep. ~ 1/L3 

L-1 ·exp(-mL) fit

hadron with form-factor

volume dep. ~ 1/L3 
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"              hadrom self energy from interaction with images
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the size where the 1/L3 correction to the masses disappears and the exponential 
behavior sets in depends on the behavior of the hadron form factor

the size where the 1/L3 correction to the masses disappears and the 
exponential behavior sets in depends on the behavior of the hadron form factor

the characteristic inverse power vs. exponential behavior can 
frustrate at limited lattice sizes the analysis of chiral vs. 
conformal hypotheses 
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un-particles

cut-off control in non-perturbative lattice calculations from RG flow 
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critical surface (massless fermions)irrelevant couplings

g2  gauge coupling

m (fermion mass)

RT continuum physics (gapless)
UVFP

IRFP (conformal)
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critical Nf 
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scenario expected to arise:

Chiral symmetry breaking 
turns conformal FP into 
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walking coupling has 
several implications 

shadow of the other phase 
to confuse?



if model had conformal IRFP 
 
two interchangeable RT descriptions?

continuum mass deformed conformal theory is on RT coming 
out of IRFP

I worked out as an example all the details of 3D scalar theory 
(Ising model) with IRFP

textbook material
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        conformal scaling and scaling violations

f (u1,u2 ,...) = g(u1,u2 ,...) +  b!d fs (b
y1u1,b

y2u2 ...)

 free energy on RT:

 analytic           singular

 y1  > 0 only relevant exponent in our case
 u1  = t ~ m identified,  y1 = ym in Technicolor notation

 y2  controls scaling violations,   leading correction term

 analytic function which can have terms like ~mk are typically sub-leading
 

 RG scaling of 2-point function:

 

G (2) (r,m,u2 ,...) = b!2dG(r / b,bym m,by2u2 ,...)
from  G (2) (r,m,u2 ,...) ! e!Mr  asymptotics with M ! m1/ym  scaling follows
leading correction to the scaling term should be ! m"  where " = #$ (g%)
analysis would change with second relevant operator at IRFP!

- analytic terms exists, but no reason to be leading conformal  
  scaling correction

- correlators of composite operators require inhomogeneous RG!
 similarly, in conformal finite size scaling analysis:

! / L = f1(x) + L"# f2 (x)  with  x = Lm1/ym

 correlation length measured in L units

This directly transcribes to hadron masses and F!
finite size scaling correction terms require 
very accurate data

 Fisher and  Brezin  worked out most of what we know!

Debbio and collaborators
early conform apps
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(M!
2 )NLO = (M!

2 )LO + ("M!
2 )1# loop + ("M!

2 )
m2

+ ("M!
2 )
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 would require more data

(!M"
2 )1# loop = [(M"

2 )LO + a2 ]2 ln(M"
2 )LO
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chiral logs not reached yet in important models! 
(like Nf=8, or Nf=12)

 ! m2

kept   cutoff term in B  see  LO a2 term
 ! a4
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2   + logs fitted function for all Goldstones 

nucleon states, rho, a1, higgs, ...Mnuc = c0 + c1m +  logs 
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2+logs chiral condensate 

        Chiral hypothesis          incomplete analysis on each side      Conformal hypothesis

M! = c! "m
1/ym ,      ym = 1+ #

leading conformal scaling 
functional form for all hadron masses 

F! = cF "m
1/ym ,       ym = 1+ #

chiral log regime was not reached in fermion mass range

same critical exponent 

!! = c" #m
(3$" )/ym + c1m

infinite volume conformal scaling violation analysis ?

conformal finite size scaling analysis and its scaling 
violations ? 

Debbio and Zwicky

Asymptotic infinite volume limit has not been reached 
yet in important candidate models for conformal window



2 Correlation Length of the 2D Classical Heisenberg Model
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Figure 1: For the temperature 1/T = 1.5 convergence happens for approximately L = 60. For the
lower temperature T = 1/1.7 one needs much large lattice sizes that might not be computationally
accessible.

For A = ξ the FFS ansatz reads ξL(T ) = ξ(T )fξ(s). Since ξL/L is a function of ξ/L we can reformulate
Equation (1) and obtain

AL(T ) = A(T )QA(x(L, T )) (2)

x(L, T ) ≡ ξL/L ,

where x(L, T ) ≡ ξL/L . The function QA is another universal scaling function. The advantage of this
reformulated FFS approach is that we do not have to know the unknown ξ = ξ∞. With the knowledge
of QA it is possible to calculate thermodynamic limits with A(T ) = AL(T )/Q(x). I.e, we “only” need
to find Q and then we could calculate AL(T ) for a “small” L.

From here on we restrict to the case A = ξ for simplicity. The method to find Q(x) = ξL/ξ∞ for the
large x region is the following (see also Figure 2):

• Choose a first temperature T0 where the correlation length ξL converges, typically with L →
80 − 150 and obtain x(T0) = ξL(T0)/L and Q(x(T0))

• Make a regression on this data.

• Choose another (lower) temperature T1 where ξL does not converge for L accessible by MC.
One obtains x(T1) = ξl(T1)/L. The support of x(T1) should have an overlap with x(T0). To
find the corresponding Q(x(T1)) we would need ξ∞(T1) which we do not have. Instead we use
the regression Q(x(T0) to extrapolate to ξ(T1). This is the same as scaling the data ξL(T1) until
the data points of x(T1) overlap with the regression. Then make a new regression on both data
sets.

• Repeat this iteratively.

Care must be taken in the choice of smallest linear system size L. One can reach high values of x also
at high temperature for lattices with lengths of 3 or 4. However, for such small lattices no reliable
results can be obtained. Kim claimed that for lattice sizes bigger than approximately 20 the relative
systematic error of ξL is about 10−2 which is comparable to typical statistical errors in our Monte
Carlo simulations.

Once Q is known, one has two possibilities. It is possible to compute the correlation length for higher
temperatures on very small lattices or one can compute the correlation length for low temperatures

8 Correlation Length of the 2D Classical Heisenberg Model
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Figure 4: The scaling function Q plotted against x. Near x ≈ 1 one can see the 65% confidence interval
of the regression. This is a result of the uncertainty of the fitting parameters αi from Equation 27. The
dashed line is the boundary of all possible functions Q generated by varying the αi in their confidence
interval. The confidence interval is only a measure for the uncertainty of Q since most of the values
Qi depend themselves on prior regressions. Therefore it has not been used to calculate the confidence
interval of the extrapolated ξ, though it is an indicator for the error.

L ξL ste of ξL MC steps x Q(x) ξ

20 11.3849 0.068 0.08 e6 0.56 0.338 33.65
30 15.8123 0.089 0.09 e6 0.52 0.452 34.90
40 19.6219 0.073 0.16 e6 0.49 0.556 35.26
50 22.6213 0.066 0.25 e6 0.45 0.660 34.23
60 25.2676 0.069 0.36 e6 0.42 0.738 34.21
70 27.4011 0.065 0.49 e6 0.39 0.802 34.16
80 29.1021 0.062 0.64 e6 0.36 0.851 34.18
90 30.5323 0.059 0.81 e6 0.33 0.886 34.43
100 31.512 0.060 1.00 e6 0.31 0.914 34.45
110 32.2544 0.059 1.21 e6 0.29 0.934 34.50
130 33.3455 0.048 1.69 e6 0.25 0.960 34.70
150 33.8079 0.048 2.25 e6 0.22 0.976 34.61
160 34.0701 0.051 2.56 e6 0.21 0.981 34.70
180 34.2703 0.046 3.24 e6 0.19 0.989 34.63
200 34.3983 0.040 4.00 e6 0.17 0.993 34.61

Table 1: This table shows a simple check if the prediction of ξ with Q(x) gives the right results. For
L = 20 we observe a rather large deviation. The results of other lattice sizes coincide to satisfactory
degree.

but FSS works!                2d O(3) model  UVFP (at T=1/!=0)
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from the three loop perturbative calculation.
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G(k) through Monte Carlo simulations Q, can be evalu-
ated from Eq. (10) when L is so large that O(k4) can be
igaored.
Using L;„=20 seems to be good enough for our
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elimination of the possible correction in Eq. (7) (see Fig.
1).

and the data necessary to evaluate them (Table II). Our
results at P = 1.7, 1.8, and 1.9 are compared with those
from direct Monte Carlo measurements [5] (Table III),
yielding excellent agreements.
To check AS from the three loop perturbative re-

sult, we introduce b~ = ( /[e (1 + aq/P)/P] with
aq —0.0915, aad the results for P = 1.7 2.7 are
plotted in Fig. 2. Within the statistical error, AS sets
ia from around P 2.3. In Fig. 3, (Ig, ln[( (P)]) are
plotted, showing a remarkable exponential type critical
behavior of ( (P) ia our range of P.
Fitting our data in Table I to, for example, ( (P) =

IV. RESULTS

We present all the Ir thus evaluated from p = 2.0
to P = 2.7 (Table I) by changing P by 0.1 or by 0.05,
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FIG. 4 m(P)/AMs far aur range of P, where the dot-
ted line represents the theoretical prediction in Ref. [12], i.e.,
m/AMs = 8/e. This figure, along w'ith Fig. 2, shows that the
prediction in Ref. [12] is incompatible with AS up to at least
P = 2.7. In other words, if m/AMs happened to be 8/e fram,
say, P = 2.7, AS would not set in until P = 2.7. The expected
compatibility seems to start to occur from a p ) 2.7.
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from Bethe ansatz:

from FSS:

8/e asymptotics slowly but reached

for any bulk physical quantity P(t)

QP(x(t)) does not depend on t explicitly!

applied to P"(t)=!"(t)

!"(t) would be ~ 22,000 at "=2.7 !

scaling function fitted

FSS is enormously powerful
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Figure 1. Qg(4) calculated for β = 0.220 and 0.221. The two data set collapse unto a single

universal curve, showing numerical evidence for the FSS equation (12) for g
(4)
R .

the data to the ansatz (13), we get for x ! 0.4425(10)

c1 = 2.338 c2 = −15.768 c3 = 19.770 c4 = −5.123

c1 = 3.225 c2 = −25.046 c3 = 42.485 c4 = −23.177

for the scaling function Q(x) of the g(4) and g(6), respectively. Using the scaling function we
calculated the thermodynamic values of the 4- and 6-point RCCs for all the values of L from 36
to 80 in the table 4. The result from each choice of L is in reasonably good agreement: we get
g

(4)
R = 24.3(1), 24.4(4), 24.1(1), 23.9(1), 23.9(1), 24.1(3), and 23.9(2) for each L from the

L = 36 through the L = 80 in the table, whereas for g
(6)
R we get 1919(11), 1939(20), 1939(21),

1915(10), 1906(17), 1917(70), and 1897(49). The invariance of the thermodynamic RCC with
respect to the choice of L is a numerical proof of the FSS for the variables (see figures 1 and
2). As usual, we extracted the thermodynamic value for several different choices of L for a
given temperature and took the average. Our net results from β = 0.217 to β = 0.2213 are
found in table 6. It is observed that both g

(4)
R and g

(6)
R tend to decrease mildly as β → βc.

In this work we assume the widely accepted correction to scaling exponent [25] θ # 0.5 and
βc = 0.221 654. By fitting our data in table 6 to

g
(2N)
R (t) = g̃

(2N)
R (1 + a2Nt0.5) (14)

we obtain the values of the critical RCCs which read

g̃
(4)
R = 23.6(2) (15)

g̃
(6)
R = 1879(50). (16)

Our results of g
(2N)
L (t = 0) are presented in table 5. It is observed that both U

(4)
L and

ξL

L
have a very mild tendency of decreasing with increasing value of L. All the values of

g
(2N)
L (t = 0) (N = 2, 3, and 4) show remarkable invariance with respect to increasing L at

least for L " 30. In other words, they do not show the effect of correction to scaling observed
in the scaling regime, as is the case in the 2D Ising model. This is a slightly surprising

FSS works again!                3d Ising model  IRFP  (g4)* conformal 

PL (t) = P! (t) "QP (x(t)),    x(t) = #L (t) / L

applied again from FSS:

applied to P"(t)=g4(t)  renormalized coupling

(a) (b) (c)

Figure 11: Pictures illustrating various physical situations in finite volume. (a) Hadrons in a
large volume, (b) a qq̄ meson in a box of size L ! 2 fm, and (c) quarks in the femto-universe.

7 QCD in finite volume and the femto-universe

In quantum field theory the physical information is encoded in the correlation func-
tions of local operators and these are hence the primary quantities to consider. From
statistical mechanics one knows, however, that certain properties of the system can
often be determined more easily by studying its behaviour in finite volume. The
calculation of critical exponents is a classical case where such finite-size techniques
are being applied.

The questions one would like to answer in QCD are not the same as in statistical
mechanics, but the general idea to probe the system through a finite volume proves
to be fruitful here too. In this section our aim mainly is to provide a qualitative
understanding of what happens when the volume is decreased. Unless stated oth-
erwise, periodic boundary conditions are assumed and the lattice spacing is taken
to be much smaller than the relevant physical scales so that lattice effects can be
ignored.

7.1 Physical situation from large to small volumes

Let us first consider the case where the spatial extent L of the lattice is significantly
greater than the typical size of the hadrons (box (a) in fig. 11). Single hadrons are
practically unaffected by the finite volume under these conditions except that their
momenta must be integer multiples of 2π/L. For multi-particle states the situation
is a bit more complicated, because the particles cannot get very far away from
each other. Two-particle energy eigenstates, for example, really describe stationary
scattering processes. If there are no resonances the corresponding energy values
differ from the spectrum calculated for non-interacting particles by small amounts
proportional to 1/L3 [60–63].
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To see the significance of (3)  and (4) let us consider 
a typical example a lattice of a size of 1 2 fm In thts 
case the m i n i m u m  non-zero m o m e n t u m  2n /L  ts of  
the order of 1 GeV Although it may be debated which 
form should be taken for the form factor, 1 GeV is a 
relanvely large momen tum and the form factor should 
gave a rather strong suppression Therefore in the re- 
gime where the size L ts of the order of 1 fm one could 
expect the n = 0 contribution to be the dominant  term 
in the summat ion  in (3) In  this intermediate regime 
one then expects a finite-size correction to the mass 
of hadrons proportional to 1/L 3 As we saw in fig 1 
the hadron mass data fit the 1 /Z  3 c u r v e  remarkably 
well 

One may add that a 1/L 3 correction is also ex- 
pected for many-parttcle states, on a rather small box 
a hadron is not very different from a two- or three- 
particle (quark)  state (on large boxes the quarks feel 
the effect of the confining force and the 1/L 3 behav- 
lour is not expected) 

Let us illustrate the size effect predicted by ( 3 ), (4) 
by an example appropriate to the numerical  data in 
fig 1 the case of p-meson exchange ( m = 0  77 GeV 
in (4 ) )  for latttce of size up to 20 and an inverse lat- 
tice spacing a - ~ = 2 GeV For the form factor we take 

1 
F(k )  = 1 + 1 0 9 (k / Ge V )  2 '  (5a)  

or 

F(k )  = exia [ - 3 (k /GeV)2  ] (5b)  

In th"e case (5a)  the form factor is chosen such that 
F ( k )  / (k 2 .~ m 2 ) IS very stmtlar to the nucleon elec- 
tromagnetic form factor The case (5b) ts rather ex- 
treme the hadron is extremely soft as a consequence 
of the exponential  decay o f F ( k )  for large momenta  
(the~shape o f F ( k )  itself is similar to the nucleon form 
factor) 

The result for the self-energy 8E for the case (5a) 
is shown (apart from an overall mult iphcattve con- 
stant)  in fig 2a as a functton of the lattice size L One 
sees that the 1/L 3 behavlour  holds up to L ~ 8 In the 
region L >  6, on the other hand, the data are well fit- 
ted by the usual one-particle exchange potential  
exp ( - m L ) / L  (see fig 2b) In fig 3a we show the 
~ffect of p exchange for the case (5b) Here the 1/L 3 
behavlour holds up to L g  16, and the data are not 
fitted so well by e x p ( - m L ) / L  in the region 
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Fig 2 (a) Dependence of self-energy on lattsce size L due to p 
exchange computed with the form factor eq (5a) displaying a 
power-law behavlour at small L (b) Plot of same data as in (a) 
fitted with the Yukawa potentxal exp ( -mL) /L  for a point par- 
ncle (sohd curve) 

6 < L < 20 (fig 3b) This exercise shows that the size 
where the 1/L 3 c o r r e c t i o n  disappears and the expo- 
nenttal correction sets in depends upon the behav- 
tour of the form factor although it would seem nat- 
ural to suppose that the 1/L 3 correction to the masses 
(or masses squared) disappears for sizes L larger than 
about 1 fm, it is easy to think of models in which this 
does not hold and consequently it is possible that the 
asymptotic regtme for an exponenttal finite lattice 
correction starts only for large lattices (e g 1 5-2 fm) 

The argument above produces a power law by tak- 
ing into account modifications of the propagation of 
virtual particles around the latttce through a finite 
extension of hadron wave functions For small lat- 
tices the power law may also be understood In the 
following non-relativistic picture Let us suppose that 
quarks are bound  by some confining potential and let 
ro be the length scale characterlslng the decrease of 
the wave function ~/(r) for large r One may mimic 
the finite-size effect for the wave function by squeez- 
ing the characteristic length ro as r'oocL A steeper 
variat ion of the squeezed wave function then leads to 
an increase of the kinetic energy of the ground state 

382 

g4 (t) = !
"4 (t)

#3 $ "2 (t)
2

we are working on similar FSS methods in Nf=12 model 
under the conformal hypothesis

caviats:
composite operators and composite states make a similar analysis more difficult

can the two phases (chiral and conformal) get confused in FSS?

large volume
hadrons point-like 

! exchange ~ exp(-mL)

squeezed wavefunction crossover to femto world

vol.dep. ~ 1/L3 

vol.dep. ~ 1/L3 

exp(-mL) fit

hadron with form-factor
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Fig. 5. Non-perturbative β-function in the Schrödinger functional scheme.

In Fig. 5 we show the non-perturbative β-function in the Schrödinger functional
scheme, together with the 2-loop and the 3-loop perturbation theory. It has been obtained
recursively from (2.27). The derivative of the step scaling function needed there has been
calculated from the polynomial interpolating σ (u) (see continuous line in Fig. 3). The non-
perturbative data are fitted with two parameters beyond the 2-loop β-function. The plot
again shows an overlapping region in ḡ, where the perturbative and the non-perturbative
β-functions agree well with each other. For α > 0.2, however, perturbation theory is no
longer valid. Furthermore, the plot shows the difference between Nf = 0 and Nf = 2. Al-
ready the leading coefficient b0 of the β-function depends on the number of flavors, and
this is nicely reflected in the figure.

4.2. Computation of v̄ as a function of the strong coupling

The difference between the quenched approximation and the two-flavor theory is also
apparent in the renormalized quantity v̄ defined in (2.16). As a function of the coupling u

we write (at zero quark mass)

(4.5)v̄ = ω(u) = lim
a/L→0

Ω(u, a/L).

In perturbation theory, Ω is known to 2-loop order,

(4.6)Ω(u, a/L) = (v1 + v2u)
(
1+ ε1(a/L) + ε2(a/L)u

)
+O

(
u2

)
.

Here [16,30,55],

(4.7)v1 = 0.0694603(1) + 0.0245370(1)Nf,

running coupling and tunneling

0

T

time

space

C’

C

x

Figure 6: Sketch of the space-time manifold on which the lattice theory is set up. C and
C′ are the boundary values of the gauge field. The irregular lines represent the trajectory
of a quark anti-quark pair, which is created at time 0 through the operator Oa [eq. (21)].

5.3 How large are the chiral symmetry violations?

In principle the error term on the right-hand side of the PCAC relation eq. (19)
provides an estimate of the size of chiral symmetry violation in lattice QCD. The
renormalization factors in the expressions for the renormalized improved axial cur-
rent and the associated pseudo-scalar density,

(AR)aµ = ZA(1 + bAamq){A
a
µ + cAa∂̃µP a},

(PR)a = ZP(1 + bPamq)P
a,

are however not known at this point and a straightforward calculation of the error
term is hence not possible.

Now let us define an unrenormalized current quark mass through

m =
〈{∂̃µAa

µ + cAa∂∗µ∂µP a}Oa〉

2〈P aOa〉
, (23)

where Oa is the operator introduced above. The PCAC relation then implies

m =
ZP(1 + bPamq)

ZA(1 + bAamq)
mR + O(a). (24)

24

Schrödinger Functional  Nf=0 and Nf=2
massless fermions
Alpha collaboration

around g2 ~ 2.5 the Nf=2  "-function breaks 
away from perturbative form where 2-loop 
and 3-loop still run closely together

g2 ~ 2.5 is the onset of tunneling 
(most likely to a metastable local minimum)

running becomes non-perturbative in very 
small box where Lmax < 0.4 fm

Why, and what is the underlying physics?

We need to understand femto physics better 
for the interpretation of the running coupling 
g2(L) in the presence of tunneling

Nf=16 weak coupling case study inside the 
conformal window shows the dynamics
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Fig. 1. Monte Carlo histories of Scoolg and ∂Scoolg /∂η from two independent replica (solid and dotted lines) in a
simulation of a 164 lattice at ḡ2 ≈ 3.3.

the non-trivial sectors is too small for them to occur in a practical simulation at all (all
tunnelings went to Q(U) = 0 and none in the reverse direction). Their weight in the path
integral is negligible. These statements have been checked for L/a = 8,12, and it appears
safe to assume their validity also for larger L/a. Therefore, we decided to always start
from a cold configuration, especially for the L/a = 16 simulations, to avoid thermaliza-
tion problems.
(2) For the two largest couplings discussed here the distribution of ∂S/∂η shows long

tails toward negative values. The same effect was also observed in the computation of the
Schrödinger functional coupling in pure SU(3) gauge theory [16]. We have related this tail
to secondary local minima of the action [54] by measuring on cooled configurations the
pure gauge contribution to the action Scoolg and to the coupling ∂Scoolg /∂η. This leads to
metastabilities as shown for an L/a = 16 simulation with ḡ2 ≈ 3.3 in Fig. 1. The upper
panel is the Monte Carlo history (tMD is the Monte Carlo time in units of molecular dynam-
ics trajectories) of the gauge part of the action after cooling for two independent replica.
The lower panel shows the history of ∂Scoolg /∂η for the same two replica. The correlation
between metastable states and small (even negative) values of ∂Scoolg /∂η appears evident in
this case. The action Scoolg for the metastability in the figure is consistent with the value for
a secondary solution of the field equations [16], given our choice for the boundary fields.
Numerical evidence suggests that this solution is a local minimum.
In order to estimate the weight of these contributions in our expectation values properly,

we have enhanced their occurrence through a modified sampling similar to [16], adding to
the HMC effective action a term

(3.8)γ
∂Sg

∂η

∣∣∣∣
η=0

+ 1
wγ

(γ − γ0)
2,

where γ0 and wγ are fixed to suitable (positive) values, while γ is a dynamical variable.
The expectation values in the original ensemble are then obtained by reweighting. By some
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Fig. 3. Step scaling function σ (u). The dashed lines show the perturbative results from the integration of the
2-loop and 3-loop β-function, respectively.

Table 5
Recursive computation of the Λ-parameter starting at u0 = umax = 5.5

i Global fit Constant fit, L/a = 6,8 Mixed cont. extrap.
ui − ln(ΛLmax) ui − ln(ΛLmax) ui − ln(ΛLmax)

0 5.5 0.957 5.5 0.957 5.5 0.957
1 3.306(40) 1.071(25) 3.291(18) 1.081(12) 3.291(19) 1.081(12)
2 2.482(31) 1.093(37) 2.479(20) 1.096(23) 2.471(20) 1.106(24)
3 2.010(27) 1.093(48) 2.009(19) 1.096(35) 2.003(19) 1.106(35)
4 1.695(22) 1.089(57) 1.691(16) 1.099(43) 1.690(17) 1.103(44)
5 1.468(18) 1.087(65) 1.462(14) 1.109(49) 1.464(15) 1.100(52)
6 1.296(16) 1.086(73) 1.288(12) 1.122(55) 1.292(14) 1.100(63)
7 1.160(14) 1.086(82) 1.151(11) 1.138(62) 1.157(13) 1.101(74)
8 1.050(13) 1.088(93) 1.041(10) 1.155(70) 1.048(13) 1.103(87)

these couplings into Eq. (2.9) for the Λ-parameter, using there the 3-loop β-function. This
gives the results in the third column of Table 5. Employing the 2-loop β-function leads
to results that are larger by roughly 0.02. The table shows that for u < 2 the Λ-parameter
barely moves within its error bars. To be conservative, we use the global fit result and quote

(4.3)− ln(ΛLmax) = 1.09(7) at umax = 5.5

as our final result, if the hadronic scale Lmax is defined through umax = 5.5.
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Low excitations of Hamiltonian (Transfer Matrix) scale with 
will evolve into glueball states for large L

Three scales of dynamics   scale 1: on smallest scale WF is localized on one vacuum
                                scale 2: tunneling sets in across vacua  
                                scale 3: spill over the barrier - confinement scale                              

much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

�

i> j

V(Cb[µ(i)
b − µ

( j)
b ])− Nf

�

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Im
a
g
in

a
ry

Real

Spatial
Temporal

Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.

main center elements at the new vacuum configurations with
complex values
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exp(iCb

j Tb)
�
=

1
N

�

n

exp(iµ(n)
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j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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b ])− Nf

�

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.
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for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.
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for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/
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12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
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like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.
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for S U(N). This implies that µ(n)
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pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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How is this effecting running coupling calculations?
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  Nf=16 case study
 

- Outlook 
  from workshop discussions: new input into lattice projects?
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Summary and outlook

- We have technology to deal with lattice specific issues: cut-off, volume, fermion mass
  RG flow and lattice continuum physics
  BSM specific    PT  
  m=0 chiral limit and finite volume issues
  

- Inside the conformal window 
  RG flow and lattice continuum physics  
  importance of finite size scaling 
  running coupling and tunneling
  Nf=16 case study
 

- Outlook 
  we have only seen so far  the tip of the iceberg of what lattice BSM can do
  for example: FSS analysis of current correlators in m->0 limit    Lattice Higgs Collaboration
   phenomenology    Strong Lattice Dynamics Collaboration
  workshop discussions: new input into lattice projects?
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